Robust, dynamic influence maximization
نویسندگان
چکیده
This paper focuses on new challenges in influence maximization inspired by non-profits’ use of social networks to effect behavioral change in their target populations. Influence maximization is a multiagent problem where the challenge is to select the most influential agents from a population connected by a social network. Specifically, our work is motivated by the problem of spreading messages about HIV prevention among homeless youth using their social network. We show how to compute solutions which are provably close to optimal when the parameters of the influence process are unknown. We then extend our algorithm to a dynamic setting where information about the network is revealed at each stage. Simulation experiments using real world networks collected by the homeless shelter show the advantages of our approach.
منابع مشابه
Fast Influence Maximization in Dynamic Graphs: A Local Updating Approach
We propose a generalized framework for influence maximization in large-scale, time evolving networks. Many real-life influence graphs such as social networks, telephone networks, and IP traffic data exhibit dynamic characteristics, e.g., the underlying structure and communication patterns evolve with time. Correspondingly, we develop a dynamic framework for the influence maximization problem, w...
متن کاملDynaDiffuse: A Dynamic Diffusion Model for Continuous Time Constrained Influence Maximization
Studying the spread of phenomena in social networks is critical but still not fully solved. Existing influence maximization models assume a static network, disregarding its evolution over time. We introduce the continuous time constrained influence maximization problem for dynamic diffusion networks, based on a novel diffusion model called DYNADIFFUSE. Although the problem is NP-hard, the influ...
متن کاملMaximization of Recursive Utilities: A Dynamic Maximum Principle Approach
In this paper we study a class of robust utility maximization problem over a terminal wealth and consumption in a complete market. Using the backward stochastic differential equation theory (BSDE in short), we derive a comparison theorem to give a dynamic maximum principle for the optimal control of our problem. We prove the existence and uniqueness of an optimal strategy and we characterize it...
متن کاملA Behavioral Analysis on the Reselection of Seed Nodes in Independent Cascade Based Influence Maximization
Influence maximization serves as the main goal of a variety of social network activities such as viral marketing and campaign advertising. The independent cascade model for the influence spread assumes a one-time chance for each activated node to influence its neighbors. This reasonable assumption cannot be bypassed, since otherwise the influence probabilities of the nodes, modeled by the edge ...
متن کاملInfluence maximization based on reachability sketches in dynamic graphs
Influence maximization is the problem of selecting the most influential nodes in a given graph. The problem is applicable to viral marketing and is actively researched as social networks become the media of information propagation. To solve the challenges of influence maximization, previous works approximate the influence evaluations to reduce the running time and to simultaneously guarantee th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017